Visible to the public Biblio

Filters: Author is Zhang, Ke  [Clear All Filters]
2020-07-24
Huo, Weiqian, Pei, Jisheng, Zhang, Ke, Ye, Xiaojun.  2014.  KP-ABE with Attribute Extension: Towards Functional Encryption Schemes Integration. 2014 Sixth International Symposium on Parallel Architectures, Algorithms and Programming. :230—237.

To allow fine-grained access control of sensitive data, researchers have proposed various types of functional encryption schemes, such as identity-based encryption, searchable encryption and attribute-based encryption. We observe that it is difficult to define some complex access policies in certain application scenarios by using these schemes individually. In this paper, we attempt to address this problem by proposing a functional encryption approach named Key-Policy Attribute-Based Encryption with Attribute Extension (KP-ABE-AE). In this approach, we utilize extended attributes to integrate various encryption schemes that support different access policies under a common top-level KP-ABE scheme, thus expanding the scope of access policies that can be defined. Theoretical analysis and experimental studies are conducted to demonstrate the applicability of the proposed KP-ABE-AE. We also present an optimization for a special application of KP-ABE-AE where IPE schemes are integrated with a KP-ABE scheme. The optimization results in an integrated scheme with better efficiency when compared to the existing encryption schemes that support the same scope of access policies.

2020-05-18
Zhao, Xiaohang, Zhang, Ke, Chai, Yi.  2019.  A Multivariate Time Series Classification based Multiple Fault Diagnosis Method for Hydraulic Systems. 2019 Chinese Control Conference (CCC). :6819–6824.
Hydraulic systems is a class of nonlinear complex systems. There are many typical characteristics with the systems: multiple functional components, multiple operation modes, space-time coupling work, and monitoring signals for faults are multivariate time series data, etc. Because of the characteristics, fault diagnosis for Hydraulic systems is not easy. Traditional fault diagnosis methods mostly ignore the multivariable timing characteristics of monitoring signals, it has made many detection and diagnosis (especially for multiple fault) can not keep high accuracy, and some of the methods are not even be able to multiple fault diagnosis. Aim at the problem, a multivariate time series classification based diagnosis method is proposed. Firstly, extracting timing characteristics (transformed features) from the time series data collected via sensors by 1-NN method. Secondly, training the transformed features by multi-class OVO-SVM to classify multivariate time series. Simulation of the method contains single fault and multiple faults conditions, the results show that the method has high accuracy, it can complete multiple-faults classification.
2019-12-16
Xing, Han, Zhang, Ke, Yang, Zifan, Sun, Lianying, Liu, Yi.  2018.  Traffic State Estimation with Big Data. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience. :9:1-9:5.

Traffic state estimation helps urban traffic control and management. In this paper, a traffic state estimation model based on the fusion of Hidden Markov model and SEA algorithm is proposed considering the randomness and volatility of traffic systems. Traffic data of average travel speed in selected city were collected, and the mean and fluctuation values of average travel speed in adjacent time windows were calculated. With Hidden Markov model, the system state network is defined according to mean values and fluctuation values. The operation efficiency of traffic system, as well as stability and trend values, were calculated with System Effectiveness Analysis (SEA) algorithm based on system state network. Calculation results show that the method perform well and can be applied to both traffic state assessment of certain road sections and large scale road networks.