Biblio
When vertically aligned carbon nanotube arrays (CNT forests) are heated by optical, electrical, or any other means, heat confinement in the lateral directions (i.e. perpendicular to the CNTs' axes), which stems from the anisotropic structure of the forest, is expected to play an important role. It has been found that, in spite of being primarily conductive along the CNTs' axes, focusing a laser beam on the sidewall of a CNT forest can lead to a highly localized hot region-an effect known as ``Heat Trap''-and efficient thermionic emission. This unusual heat confinement phenomenon has applications where the spread of heat has to be minimized, but electrical conduction is required, notably in energy conversion (e.g. vacuum thermionics and thermoelectrics). However, despite its strong scientific and practical importance, the existence and role of the lateral heat confinement in the Heat Trap effect have so far been elusive. In this work, for the first time, by using a rotating elliptical laser beam, we directly observe the existence of this lateral heat confinement and its corresponding effects on the unusual temperature rise during the Heat Trap effect.