Visible to the public Biblio

Filters: Author is Kučera, Jan  [Clear All Filters]
2022-04-13
Goldschmidt, Patrik, Kučera, Jan.  2021.  Defense Against SYN Flood DoS Attacks Using Network-based Mitigation Techniques. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :772—777.

TCP SYN Flood is one of the most widespread DoS attack types performed on computer networks nowadays. As a possible countermeasure, we implemented and deployed modified versions of three network-based mitigation techniques for TCP SYN authentication. All of them utilize the TCP three-way handshake mechanism to establish a security association with a client before forwarding its SYN data. These algorithms are especially effective against regular attacks with spoofed IP addresses. However, our modifications allow deflecting even more sophisticated SYN floods able to bypass most of the conventional approaches. This comes at the cost of the delayed first connection attempt, but all subsequent SYN segments experience no significant additional latency (\textbackslashtextless; 0.2ms). This paper provides a detailed description and analysis of the approaches, as well as implementation details with enhanced security tweaks. The discussed implementations are built on top of the hardware-accelerated FPGA-based DDoS protection solution developed by CESNET and are about to be deployed in its backbone network and Internet exchange point at NIX.CZ.

2019-12-18
Kuka, Mário, Vojanec, Kamil, Kučera, Jan, Benáček, Pavel.  2019.  Accelerated DDoS Attacks Mitigation using Programmable Data Plane. 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :1–3.

DDoS attacks are a significant threat to internet service or infrastructure providers. This poster presents an FPGA-accelerated device and DDoS mitigation technique to overcome such attacks. Our work addresses amplification attacks whose goal is to generate enough traffic to saturate the victims links. The main idea of the device is to efficiently filter malicious traffic at high-speeds directly in the backbone infrastructure before it even reaches the victim's network. We implemented our solution for two FPGA platforms using the high-level description in P4, and we report on its performance in terms of throughput and hardware resources.