Visible to the public Biblio

Filters: Author is Falchi, Fabrizio  [Clear All Filters]
2020-06-03
Amato, Giuseppe, Falchi, Fabrizio, Gennaro, Claudio, Massoli, Fabio Valerio, Passalis, Nikolaos, Tefas, Anastasios, Trivilini, Alessandro, Vairo, Claudio.  2019.  Face Verification and Recognition for Digital Forensics and Information Security. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.

2019-12-30
Amato, Giuseppe, Carrara, Fabio, Falchi, Fabrizio, Gennaro, Claudio, Vairo, Claudio.  2018.  Facial-based Intrusion Detection System with Deep Learning in Embedded Devices. Proceedings of the 2018 International Conference on Sensors, Signal and Image Processing. :64–68.
With the advent of deep learning based methods, facial recognition algorithms have become more effective and efficient. However, these algorithms have usually the disadvantage of requiring the use of dedicated hardware devices, such as graphical processing units (GPUs), which pose restrictions on their usage on embedded devices with limited computational power. In this paper, we present an approach that allows building an intrusion detection system, based on face recognition, running on embedded devices. It relies on deep learning techniques and does not exploit the GPUs. Face recognition is performed using a knn classifier on features extracted from a 50-layers Residual Network (ResNet-50) trained on the VGGFace2 dataset. In our experiment, we determined the optimal confidence threshold that allows distinguishing legitimate users from intruders. In order to validate the proposed system, we created a ground truth composed of 15,393 images of faces and 44 identities, captured by two smart cameras placed in two different offices, in a test period of six months. We show that the obtained results are good both from the efficiency and effectiveness perspective.