Biblio
Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.
The base station (BS) is the main device in a wireless sensor network (WSN) and used to collect data from all the sensor nodes. The information of the whole network is stored in the BS and hence it is always targeted by the adversaries who want to interrupt the operation of the network. The nodes transmit their data to the BS using multi-hop technique and hence form an eminent traffic pattern that can be easily observed by a remote adversary. The presented research aims to increase the anonymity of the BS. The proposed scheme uses a mobile BS and ring nodes to complete the above mentioned objective. The simulation results show that the proposed scheme has superior outcomes as compared to the existing techniques.
Route selection is a very sensitive activity for mobile ad-hoc network (MANET) and ranking of multiple routes from source node to destination node can result in effective route selection and can provide many other benefits for better performance and security of MANET. This paper proposes an evaluation model based on analytical hierarchy process (AHP), fuzzy sets and technique for order performance by similarity to ideal solution (TOPSIS) to provide a useful solution for ranking of routes. The proposed model utilizes AHP to acquire criteria weights, fuzzy sets to describe vagueness with linguistic values and triangular fuzzy numbers, and TOPSIS to obtain the final ranking of routes. Final ranking of routes facilitates selection of best and most reliable route and provide alternative options for making a robust Mobile Ad-hoc network.