Visible to the public Biblio

Filters: Author is Khaskheli, Murad Ali  [Clear All Filters]
2019-12-30
Razaque, Abdul, Jinrui, Wang, Zancheng, Wang, Hani, Qassim Bani, Khaskheli, Murad Ali, Bhutto, Waseem Ahmed.  2018.  Integration of CPU and GPU to Accelerate RSA Modular Exponentiation Operation. 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1-6.

Now-a-days, the security of data becomes more and more important, people store many personal information in their phones. However, stored information require security and maintain privacy. Encryption algorithm has become the main force of maintaining the security of data. Thus, the algorithm complexity and encryption efficiency have become the main measurement of whether the encryption algorithm is save or not. With the development of hardware, we have many tools to improve the algorithm at present. Because modular exponentiation in RSA algorithm can be divided into several parts mathematically. In this paper, we introduce a conception by dividing the process of encryption and add the model into graphics process unit (GPU). By using GPU's capacity in parallel computing, the core of RSA can be accelerated by using central process unit (CPU) and GPU. Compute unified device architecture (CUDA) is a platform which can combine CPU and GPU together to realize GPU parallel programming and this is the tool we use to perform experience of accelerating RSA algorithm. This paper will also build up a mathematical model to help understand the mechanism of RSA encryption algorithm.