Visible to the public Biblio

Filters: Author is Zou, Cliff C.  [Clear All Filters]
2022-11-18
Tall, Anne M., Zou, Cliff C., Wang, Jun.  2021.  Integrating Cybersecurity Into a Big Data Ecosystem. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :69—76.
This paper provides an overview of the security service controls that are applied in a big data processing (BDP) system to defend against cyber security attacks. We validate this approach by modeling attacks and effectiveness of security service controls in a sequence of states and transitions. This Finite State Machine (FSM) approach uses the probable effectiveness of security service controls, as defined in the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF). The attacks used in the model are defined in the ATT&CK™ framework. Five different BDP security architecture configurations are considered, spanning from a low-cost default BDP configuration to a more expensive, industry supported layered security architecture. The analysis demonstrates the importance of a multi-layer approach to implementing security in BDP systems. With increasing interest in using BDP systems to analyze sensitive data sets, it is important to understand and justify BDP security architecture configurations with their significant costs. The output of the model demonstrates that over the run time, larger investment in security service controls results in significantly more uptime. There is a significant increase in uptime with a linear increase in security service control investment. We believe that these results support our recommended BDP security architecture. That is, a layered architecture with security service controls integrated into the user interface, boundary, central management of security policies, and applications that incorporate privacy preserving programs. These results enable making BDP systems operational for sensitive data accessed in a multi-tenant environment.
2020-01-06
Rezaeighaleh, Hossein, Laurens, Roy, Zou, Cliff C..  2018.  Secure Smart Card Signing with Time-based Digital Signature. 2018 International Conference on Computing, Networking and Communications (ICNC). :182–187.
People use their personal computers, laptops, tablets and smart phones to digitally sign documents in company's websites and other online electronic applications, and one of the main cybersecurity challenges in this process is trusted digital signature. While the majority of systems use password-based authentication to secure electronic signature, some more critical systems use USB token and smart card to prevent identity theft and implement the trusted digital signing process. Even though smart card provides stronger security, any weakness in the terminal itself can compromise the security of smart card. In this paper, we investigate current smart card digital signature, and illustrate well-known basic vulnerabilities of smart card terminal with the real implementation of two possible attacks including PIN sniffing and message alteration just before signing. As we focus on second attack in this paper, we propose a novel mechanism using time-based digital signing by smart card to defend against message alteration attack. Our prototype implementation and performance analysis illustrate that our proposed mechanism is feasible and provides stronger security. Our method uses popular timestamping protocol packets and does not require any new key distribution and certificate issuance.