Visible to the public Biblio

Filters: Author is Tauber, Markus  [Clear All Filters]
2022-02-03
Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker.  2021.  Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :890—895.
Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
2020-08-24
Maksuti, Silia, Schluga, Oliver, Settanni, Giuseppe, Tauber, Markus, Delsing, Jerker.  2019.  Self-Adaptation Applied to MQTT via a Generic Autonomic Management Framework. 2019 IEEE International Conference on Industrial Technology (ICIT). :1179–1185.
Manufacturing enterprises are constantly exploring new ways to improve their own production processes to address the increasing demand of customized production. However, such enterprises show a low degree of flexibility, which mainly results from the need to configure new production equipment at design and run time. In this paper we propose self-adaptation as an approach to improve data transmission flexibility in Industry 4.0 environments. We implement an autonomic manager using a generic autonomic management framework, which applies the most appropriate data transmission configuration based on security and business process related requirements, such as performance. The experimental evaluation is carried out in a MQTT infrastructure and the results show that using self-adaptation can significantly improve the trade-off between security and performance. We then propose to integrate anomaly detection methods as a solution to support self-adaptation by monitoring and learning the normal behavior of an industrial system and show how this can be used by the generic autonomic management framework.
2020-01-13
Ivkic, Igor, Mauthe, Andreas, Tauber, Markus.  2019.  Towards a Security Cost Model for Cyber-Physical Systems. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–7.
In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.