Biblio
Filters: Author is Lipps, Christoph [Clear All Filters]
Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
.
2020. In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
Securing Industrial Wireless Networks: Enhancing SDN with PhySec. 2019 Conference on Next Generation Computing Applications (NextComp). :1–7.
.
2019. The requirements regarding network management defined by the continuously rising amount of interconnected devices in the industrial landscape turns it into an increasingly complex task. Associated by the fusion of technologies up to Cyber-Physical Production Systems (CPPS) and the Industrial Internet of Things (IIoT) with its multitude of communicating sensors and actuators new demands arise. In particular, the driving forces of this development, mobility and flexibility, are affecting today's networks. However, it is precisely these wireless solutions, as enabler for this advancement, that create new attack vectors and cyber-security threats. Furthermore, many cryptographic procedures, intended to secure the networks, require additional overhead, which is limiting the transmission bandwidth and speed as well. For this reason, new and efficient solutions must be developed and applied, in order to secure the existing, as well as the future, industrial communication networks. This work proposes a conceptual approach, consisting of a combination of Software-Defined Networking (SDN) and Physical Layer Security (PhySec) to satisfy the network security requirements. Use cases are explained that demonstrate the appropriateness of the approach and it is shown that this is a easy to use and resource efficient, but nevertheless sound and secure approach.