Visible to the public Biblio

Filters: Author is Nguyen-Van, Thanh  [Clear All Filters]
2020-03-16
Nguyen-Van, Thanh, Nguyen-Anh, Tuan, Le, Tien-Dat, Nguyen-Ho, Minh-Phuoc, Nguyen-Van, Tuong, Le, Nhat-Quang, Nguyen-An, Khuong.  2019.  Scalable Distributed Random Number Generation Based on Homomorphic Encryption. 2019 IEEE International Conference on Blockchain (Blockchain). :572–579.

Generating a secure source of publicly-verifiable randomness could be the single most fundamental technical challenge on a distributed network, especially in the blockchain context. Many current proposals face serious problems of scalability and security issues. We present a protocol which can be implemented on a blockchain that ensures unpredictable, tamper-resistant, scalable and publicly-verifiable outcomes. The main building blocks of our protocol are homomorphic encryption (HE) and verifiable random functions (VRF). The use of homomorphic encryption enables mathematical operations to be performed on encrypted data, to ensure no one knows the outcome prior to being generated. The protocol requires O(n) elliptic curve multiplications and additions as well as O(n) signature signing and verification operations, which permits great scalability. We present a comparison between recent approaches to the generation of random beacons.

2020-01-20
Nguyen-Van, Thanh, Le, Tien-Dat, Nguyen-Anh, Tuan, Nguyen-Ho, Minh-Phuoc, Nguyen-Van, Tuong, Le-Tran, Minh-Quoc, Le, Quang Nhat, Pham, Harry, Nguyen-An, Khuong.  2019.  A System for Scalable Decentralized Random Number Generation. 2019 IEEE 23rd International Enterprise Distributed Object Computing Workshop (EDOCW). :100–103.

Generating public randomness has been significantly demanding and also challenging, especially after the introduction of the Blockchain Technology. Lotteries, smart contracts, and random audits are examples where the reliability of the randomness source is a vital factor. We demonstrate a system of random number generation service for generating fair, tamper-resistant, and verifiable random numbers. Our protocol together with this system is an R&D project aiming at providing a decentralized solution to random number generation by leveraging the blockchain technology along with long-lasting cryptographic primitives including homomorphic encryption, verifiable random functions. The system decentralizes the process of generating random numbers by combining each party's favored value to obtain the final random numbers. Our novel idea is to force each party to encrypt his contribution before making it public. With the help of homomorphic encryption, all encrypted contribution can be combined without performing any decryption. The solution has achieved the properties of unpredictability, tamper-resistance, and public-verifiability. In addition, it only offers a linear overall complexity with respect to the number of parties on the network, which permits great scalability.