Biblio
With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.
Deep Learning is an area of Machine Learning research, which can be used to manipulate large amount of information in an intelligent way by using the functionality of computational intelligence. A deep learning system is a fully trainable system beginning from raw input to the final output of recognized objects. Feature selection is an important aspect of deep learning which can be applied for dimensionality reduction or attribute reduction and making the information more explicit and usable. Deep learning can build various learning models which can abstract unknown information by selecting a subset of relevant features. This property of deep learning makes it useful in analysis of highly complex information one which is present in intrusive data or information flowing with in a web system or a network which needs to be analyzed to detect anomalies. Our approach combines the intelligent ability of Deep Learning to build a smart Intrusion detection system.