Biblio
Filters: Author is Novikova, Evgenia [Clear All Filters]
Analysis of Visualization Techniques for Malware Detection. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :337–340.
.
2020. Due to the steady growth of various sophisticated types of malware, different malware analysis systems are becoming more and more demanded. While there are various automatic approaches available to identify and detect malware, the malware analysis is still time-consuming process. The visualization-driven techniques may significantly increase the efficiency of the malware analysis process by involving human visual system which is a powerful pattern seeker. In this paper the authors reviewed different visualization methods, examined their features and tasks solved with their help. The paper presents the most commonly used approaches and discusses open challenges in malware visual analytics.
The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
.
2019. The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.