Zhou, Yiwen, Shen, Qili, Dong, Mianxiong, Ota, Kaoru, Wu, Jun.
2019.
Chaos-Based Delay-Constrained Green Security Communications for Fog-Enabled Information-Centric Multimedia Network. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). :1–6.
The Information-Centric Network possessing the content-centric features, is the innovative architecture of the next generation of network. Collaborating with fog computing characterized by its strong edge power, ICN will become the development trend of the future network. The emergence of Information-Centric Multimedia Network (ICMN) can meet the increasing demand for transmission of multimedia streams in the current Internet environment. The data transmission has become more delay-constrained and convenient because of the distributed storage, the separation between the location of information and terminals, and the strong cacheability of each node in ICN. However, at the same time, the security of the multimedia streams in the delivery process still requires further protection against wiretapping, interception or attacking. In this paper, we propose the delay-constrained green security communications for ICMN based on chaotic encryption and fog computing so as to transmit multimedia streams in a more secure and time-saving way. We adapt a chaotic cryptographic method to ICMN, implementing the encryption and decryption of multimedia streams. Meanwhile, the network edge capability to process the encryption and decryption is enhanced. Thanks to the fog computing, the strengthened transmission speed of the multimedia streams can fulfill the need for short latency. The work in the paper is of great significance to improve the green security communications of multimedia streams in ICMN.
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.
2019.
SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.
2019.
NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.