Visible to the public Biblio

Filters: Author is Wang, Jinghan  [Clear All Filters]
2023-01-13
Chen, Ju, Wang, Jinghan, Song, Chengyu, Yin, Heng.  2022.  JIGSAW: Efficient and Scalable Path Constraints Fuzzing. 2022 IEEE Symposium on Security and Privacy (SP). :18—35.
Coverage-guided testing has shown to be an effective way to find bugs. If we model coverage-guided testing as a search problem (i.e., finding inputs that can cover more branches), then its efficiency mainly depends on two factors: (1) the accuracy of the searching algorithm and (2) the number of inputs that can be evaluated per unit time. Therefore, improving the search throughput has shown to be an effective way to improve the performance of coverage-guided testing.In this work, we present a novel design to improve the search throughput: by evaluating newly generated inputs with JIT-compiled path constraints. This approach allows us to significantly improve the single thread throughput as well as scaling to multiple cores. We also developed several optimization techniques to eliminate major bottlenecks during this process. Evaluation of our prototype JIGSAW shows that our approach can achieve three orders of magnitude higher search throughput than existing fuzzers and can scale to multiple cores. We also find that with such high throughput, a simple gradient-guided search heuristic can solve path constraints collected from a large set of real-world programs faster than SMT solvers with much more sophisticated search heuristics. Evaluation of end-to-end coverage-guided testing also shows that our JIGSAW-powered hybrid fuzzer can outperform state-of-the-art testing tools.
2020-01-21
Fan, Yongkai, Zhao, Guanqun, Sun, Xiaofeng, Wang, Jinghan, Lei, Xia, Xia, Fanglue, Peng, Cong.  2019.  A Security Scheme for Fog Computing Environment of IoT. Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things. :58–59.

As an extension of cloud computing, fog computing environment as well as fog node plays an increasingly important role in internet of things (IoT). This technology provides IoT with more distributed and efficient applications and services. However, IoT nodes have so much variety and perform poorly, which leads to more security issues. For this situation, we initially design a security scheme for the IoT fog environment. Based on the combination of Blockchain and Trusted Execution Environment (TEE) technologies, the security of data storage and transmission from fog nodes to the cloud are ensured, thus ensuring the trustworthiness of the data source in the fog environment.