Visible to the public Biblio

Filters: Author is Li, Ruidong  [Clear All Filters]
2023-01-13
Luo, Xinyi, Xu, Zhuo, Xue, Kaiping, Jiang, Qiantong, Li, Ruidong, Wei, David.  2022.  ScalaCert: Scalability-Oriented PKI with Redactable Consortium Blockchain Enabled "On-Cert" Certificate Revocation. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :1236–1246.
As the voucher for identity, digital certificates and the public key infrastructure (PKI) system have always played a vital role to provide the authentication services. In recent years, with the increase in attacks on traditional centralized PKIs and the extensive deployment of blockchains, researchers have tried to establish blockchain-based secure decentralized PKIs and have made significant progress. Although blockchain enhances security, it brings new problems in scalability due to the inherent limitations of blockchain’s data structure and consensus mechanism, which become much severe for the massive access in the era of 5G and B5G. In this paper, we propose ScalaCert to mitigate the scalability problems of blockchain-based PKIs by utilizing redactable blockchain for "on-cert" revocation. Specifically, we utilize the redactable blockchain to record revocation information directly on the original certificate ("on-cert") and remove additional data structures such as CRL, significantly reducing storage overhead. Moreover, the combination of redactable and consortium blockchains brings a new kind of attack called deception of versions (DoV) attack. To defend against it, we design a random-block-node-check (RBNC) based freshness check mechanism. Security and performance analyses show that ScalaCert has sufficient security and effectively solves the scalability problem of the blockchain-based PKI system.
2021-11-29
Huang, Xuanbo, Xue, Kaiping, Xing, Yitao, Hu, Dingwen, Li, Ruidong, Sun, Qibin.  2020.  FSDM: Fast Recovery Saturation Attack Detection and Mitigation Framework in SDN. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :329–337.
The whole Software-Defined Networking (SDN) system might be out of service when the control plane is overloaded by control plane saturation attacks. In this attack, a malicious host can manipulate massive table-miss packets to exhaust the control plane resources. Even though many studies have focused on this problem, systems still suffer from more influenced switches because of centralized mitigation policies, and long recovery delay because of the remaining attack flows. To solve these problems, we propose FSDM, a Fast recovery Saturation attack Detection and Mitigation framework. For detection, FSDM extracts the distribution of Control Channel Occupation Rate (CCOR) to detect the attack and locates the port that attackers come from. For mitigation, with the attacker's location and distributed Mitigation Agents, FSDM adopts different policies to migrate or block attack flows, which influences fewer switches and protects the control plane from resource exhaustion. Besides, to reduce the system recovery delay, FSDM equips a novel functional module called Force\_Checking, which enables the whole system to quickly clean up the remaining attack flows and recovery faster. Finally, we conducted extensive experiments, which show that, with the increasing of attack PPS (Packets Per Second), FSDM only suffers a minor recovery delay increase. Compared with traditional methods without cleaning up remaining flows, FSDM saves more than 81% of ping RTT under attack rate ranged from 1000 to 4000 PPS, and successfully reduced the delay of 87% of HTTP requests time under large attack rate ranged from 5000 to 30000 PPS.
2020-01-21
Hu, Xiaoyan, Zheng, Shaoqi, Gong, Jian, Cheng, Guang, Zhang, Guoqiang, Li, Ruidong.  2019.  Enabling Linearly Homomorphic Signatures in Network Coding-Based Named Data Networking. Proceedings of the 14th International Conference on Future Internet Technologies. :1–4.

Network coding has been proposed to be built into Named Data Networking (NDN) for achieving efficient simultaneous content delivery. Network coding allows intermediate nodes to perform arbitrary coding operations on Data packets. One salient feature of NDN is its content-based security by protecting each Data packet with a signature signed by its publisher. However, in the network coding-based NDN, it remains unclear how to securely and efficiently sign a recoded Data packet at an intermediate router. This work proposes a mechanism to enable linearly homomorphic signatures in network coding-based NDN so as to directly generate a signature for a recoded Data packet by combining the signatures of those Data packets on which the recoding operation is performed.