Huang, Xuanbo, Xue, Kaiping, Xing, Yitao, Hu, Dingwen, Li, Ruidong, Sun, Qibin.
2020.
FSDM: Fast Recovery Saturation Attack Detection and Mitigation Framework in SDN. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :329–337.
The whole Software-Defined Networking (SDN) system might be out of service when the control plane is overloaded by control plane saturation attacks. In this attack, a malicious host can manipulate massive table-miss packets to exhaust the control plane resources. Even though many studies have focused on this problem, systems still suffer from more influenced switches because of centralized mitigation policies, and long recovery delay because of the remaining attack flows. To solve these problems, we propose FSDM, a Fast recovery Saturation attack Detection and Mitigation framework. For detection, FSDM extracts the distribution of Control Channel Occupation Rate (CCOR) to detect the attack and locates the port that attackers come from. For mitigation, with the attacker's location and distributed Mitigation Agents, FSDM adopts different policies to migrate or block attack flows, which influences fewer switches and protects the control plane from resource exhaustion. Besides, to reduce the system recovery delay, FSDM equips a novel functional module called Force\_Checking, which enables the whole system to quickly clean up the remaining attack flows and recovery faster. Finally, we conducted extensive experiments, which show that, with the increasing of attack PPS (Packets Per Second), FSDM only suffers a minor recovery delay increase. Compared with traditional methods without cleaning up remaining flows, FSDM saves more than 81% of ping RTT under attack rate ranged from 1000 to 4000 PPS, and successfully reduced the delay of 87% of HTTP requests time under large attack rate ranged from 5000 to 30000 PPS.