Biblio
Climate change has affected the cultivation in all countries with extreme drought, flooding, higher temperature, and changes in the season thus leaving behind the uncontrolled production. Consequently, the smart farm has become part of the crucial trend that is needed for application in certain farm areas. The aims of smart farm are to control and to enhance food production and productivity, and to increase farmers' profits. The advantages in applying smart farm will improve the quality of production, supporting the farm workers, and better utilization of resources. This study aims to explore the research trends and identify research clusters on smart farm using bibliometric analysis that has supported farming to improve the quality of farm production. The bibliometric analysis is the method to explore the relationship of the articles from a co-citation network of the articles and then science mapping is used to identify clusters in the relationship. This study examines the selected research articles in the smart farm field. The area of research in smart farm is categorized into two clusters that are soil carbon emission from farming activity, food security and farm management by using a VOSviewer tool with keywords related to research articles on smart farm, agriculture, supply chain, knowledge management, traceability, and product lifecycle management from Web of Science (WOS) and Scopus online database. The major cluster of smart farm research is the soil carbon emission from farming activity which impacts on climate change that affects food production and productivity. The contribution is to identify the trends on smart farm to develop research in the future by means of bibliometric analysis.
In this paper, we inspire from two analogies: the warfare kill zone and the airport check-in system, to tackle the issue of spam botnet detection. We add a new line of defense to the defense-in-depth model called the third line. This line is represented by a security framework, named the Spam Trapping System (STS) and adopts the prevent-then-detect approach to fight against spam botnets. The framework exploits the application sandboxing principle to prevent the spam from going out of the host and detect the corresponding malware bot. We show that the proposed framework can ensure better security against malware bots. In addition, an analytical study demonstrates that the framework offers optimal performance in terms of detection time and computational cost in comparison to intrusion detection systems based on static and dynamic analysis.