Visible to the public Biblio

Filters: Author is Taher, Kazi Abu  [Clear All Filters]
2022-04-18
Toyeer-E-Ferdoush, Ghosh, Bikarna Kumar, Taher, Kazi Abu.  2021.  Security Policy Based Network Infrastructure for Effective Digital Service. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). :136–140.

In this research a secured framework is developed to support effective digital service delivery for government to stakeholders. It is developed to provide secured network to the remote area of Bangladesh. The proposed framework has been tested through the rough simulation of the network infrastructure. Each and every part of the digital service network has been analyzed in the basis of security purpose. Through the simulation the security issues are identified and proposed a security policy framework for effective service. Basing on the findings the issues are included and the framework has designed as the solution of security issues. A complete security policy framework has prepared on the basis of the network topology. As the output the stakeholders will get a better and effective data service. This model is better than the other expected network infrastructure. Till now in Bangladesh none of the network infrastructure are security policy based. This is needed to provide the secured network to remote area from government.

2022-03-23
Islam, Al Amin, Taher, Kazi Abu.  2021.  A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). :1—6.
Underwater Wireless Sensor Networks (UWSN) has vast application areas. Due to the unprotected nature, underwater security is a prime concern. UWSN becomes vulnerable to different attacks due to malicious nodes. Sybil attack is one of the major attacks in UWSN. Most of the proposed security methods are based on encryption and decryption which consumes resources of the sensor nodes. In this paper, a simple authentication mechanism is proposed for securing the UWSN from the Sybil attack. As the nodes have very less computation power and energy resources so this work is not followed any kind of encryption and decryption technique. An authentication process is designed in such a way that node engaged in communication authenticate neighboring nodes by node ID and the data stored in the cluster head. This work is also addressed sensor node compromisation issue through Hierarchical Fuzzy System (HFS) based trust management model. The trust management model has been simulated in Xfuzzy-3.5. After the simulation conducted, the proposed trust management mechanism depicts significant performance on detecting compromised nodes.
2020-03-02
Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
2020-02-10
Taher, Kazi Abu, Nahar, Tahmin, Hossain, Syed Akhter.  2019.  Enhanced Cryptocurrency Security by Time-Based Token Multi-Factor Authentication Algorithm. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :308–312.
A noble multi-factor authentication (MFA) algorithm is developed for the security enhancement of the Cryptocurrency (CR). The main goal of MFA is to set up extra layer of safeguard while seeking access to a targets such as physical location, computing device, network or database. MFA security scheme requires more than one method for the validation from commutative family of credentials to verify the user for a transaction. MFA can reduce the risk of using single level password authentication by introducing additional factors of authentication. MFA can prevent hackers from gaining access to a particular account even if the password is compromised. The superfluous layer of security introduced by MFA offers additional security to a user. MFA is implemented by using time-based onetime password (TOTP) technique. For logging to any entity with MFA enabled, the user first needs username and password, as a second factor, the user then needs the MFA token to virtually generate a TOTP. It is found that MFA can provide a better means of secured transaction of CR.
2020-01-27
Taher, Kazi Abu, Mohammed Yasin Jisan, Billal, Rahman, Md. Mahbubur.  2019.  Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :643–646.
A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.