Visible to the public Biblio

Filters: Author is Al Faruque, Mohammad Abdullah  [Clear All Filters]
2020-03-02
Vatanparvar, Korosh, Al Faruque, Mohammad Abdullah.  2019.  Self-Secured Control with Anomaly Detection and Recovery in Automotive Cyber-Physical Systems. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :788–793.

Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.

2020-01-29
Chuchu Fan, Sayan Mitra.  2019.  Data-Driven Safety Verification of Complex Cyber-Physical Systems. Design Automation of Cyber-Physical Systems. :107–142.

Data-driven verification methods utilize execution data together with models for establishing safety requirements. These are often the only tools available for analyzing complex, nonlinear cyber-physical systems, for which purely model-based analysis is currently infeasible. In this chapter, we outline the key concepts and algorithmic approaches for data-driven verification and discuss the guarantees they provide. We introduce some of the software tools that embody these ideas and present several practical case studies demonstrating their application in safety analysis of autonomous vehicles, advanced driver assist systems (ADAS), satellite control, and engine control systems.