Biblio
Spams are unsolicited and unnecessary messages which may contain harmful codes or links for activation of malicious viruses and spywares. Increasing popularity of social networks attracts the spammers to perform malicious activities in social networks. So an efficient spam detection method is necessary for social networks. In this paper, feed forward neural network with back propagation based spam detection model is proposed. The quality of the learning process is improved by tuning initial weights of feed forward neural network using proposed enhanced step size firefly algorithm which reduces the time for finding optimal weights during the learning process. The model is applied for twitter dataset and the experimental results show that, the proposed model performs well in terms of accuracy and detection rate and has lower false positive rate.