Visible to the public Biblio

Filters: Author is Shenefiel, Chris  [Clear All Filters]
2021-06-24
Moran, Kevin, Palacio, David N., Bernal-Cárdenas, Carlos, McCrystal, Daniel, Poshyvanyk, Denys, Shenefiel, Chris, Johnson, Jeff.  2020.  Improving the Effectiveness of Traceability Link Recovery using Hierarchical Bayesian Networks. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :873—885.
Traceability is a fundamental component of the modern software development process that helps to ensure properly functioning, secure programs. Due to the high cost of manually establishing trace links, researchers have developed automated approaches that draw relationships between pairs of textual software artifacts using similarity measures. However, the effectiveness of such techniques are often limited as they only utilize a single measure of artifact similarity and cannot simultaneously model (implicit and explicit) relationships across groups of diverse development artifacts. In this paper, we illustrate how these limitations can be overcome through the use of a tailored probabilistic model. To this end, we design and implement a HierarchiCal PrObabilistic Model for SoftwarE Traceability (Comet) that is able to infer candidate trace links. Comet is capable of modeling relationships between artifacts by combining the complementary observational prowess of multiple measures of textual similarity. Additionally, our model can holistically incorporate information from a diverse set of sources, including developer feedback and transitive (often implicit) relationships among groups of software artifacts, to improve inference accuracy. We conduct a comprehensive empirical evaluation of Comet that illustrates an improvement over a set of optimally configured baselines of ≈14% in the best case and ≈5% across all subjects in terms of average precision. The comparative effectiveness of Comet in practice, where optimal configuration is typically not possible, is likely to be higher. Finally, we illustrate Comet's potential for practical applicability in a survey with developers from Cisco Systems who used a prototype Comet Jenkins plugin.
2020-02-10
Palacio, David N., McCrystal, Daniel, Moran, Kevin, Bernal-Cárdenas, Carlos, Poshyvanyk, Denys, Shenefiel, Chris.  2019.  Learning to Identify Security-Related Issues Using Convolutional Neural Networks. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :140–144.
Software security is becoming a high priority for both large companies and start-ups alike due to the increasing potential for harm that vulnerabilities and breaches carry with them. However, attaining robust security assurance while delivering features requires a precarious balancing act in the context of agile development practices. One path forward to help aid development teams in securing their software products is through the design and development of security-focused automation. Ergo, we present a novel approach, called SecureReqNet, for automatically identifying whether issues in software issue tracking systems describe security-related content. Our approach consists of a two-phase neural net architecture that operates purely on the natural language descriptions of issues. The first phase of our approach learns high dimensional word embeddings from hundreds of thousands of vulnerability descriptions listed in the CVE database and issue descriptions extracted from open source projects. The second phase then utilizes the semantic ontology represented by these embeddings to train a convolutional neural network capable of predicting whether a given issue is security-related. We evaluated SecureReqNet by applying it to identify security-related issues from a dataset of thousands of issues mined from popular projects on GitLab and GitHub. In addition, we also applied our approach to identify security-related requirements from a commercial software project developed by a major telecommunication company. Our preliminary results are encouraging, with SecureReqNet achieving an accuracy of 96% on open source issues and 71.6% on industrial requirements.