Visible to the public Biblio

Filters: Author is Giannetsos, Thanassis  [Clear All Filters]
2022-09-20
Afzal-Houshmand, Sam, Homayoun, Sajad, Giannetsos, Thanassis.  2021.  A Perfect Match: Deep Learning Towards Enhanced Data Trustworthiness in Crowd-Sensing Systems. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :258—264.
The advent of IoT edge devices has enabled the collection of rich datasets, as part of Mobile Crowd Sensing (MCS), which has emerged as a key enabler for a wide gamut of safety-critical applications ranging from traffic control, environmental monitoring to assistive healthcare. Despite the clear advantages that such unprecedented quantity of data brings forth, it is also subject to inherent data trustworthiness challenges due to factors such as malevolent input and faulty sensors. Compounding this issue, there has been a plethora of proposed solutions, based on the use of traditional machine learning algorithms, towards assessing and sifting faulty data without any assumption on the trustworthiness of their source. However, there are still a number of open issues: how to cope with the presence of strong, colluding adversaries while at the same time efficiently managing this high influx of incoming user data. In this work, we meet these challenges by proposing the hybrid use of Deep Learning schemes (i.e., LSTMs) and conventional Machine Learning classifiers (i.e. One-Class Classifiers) for detecting and filtering out false data points. We provide a prototype implementation coupled with a detailed performance evaluation under various (attack) scenarios, employing both real and synthetic datasets. Our results showcase how the proposed solution outperforms various existing resilient aggregation and outlier detection schemes.
2021-05-05
Hasan, Tooba, Adnan, Akhunzada, Giannetsos, Thanassis, Malik, Jahanzaib.  2020.  Orchestrating SDN Control Plane towards Enhanced IoT Security. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :457—464.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively detect sophisticated malware resulting in undesirable (run-time) device and network modifications. This is not an easy task considering the dynamic and heterogeneous nature of IoT environments; i.e., different operating systems, varied connected networks and a wide gamut of underlying protocols and devices. Malicious IoT nodes or gateways can potentially lead to the compromise of the whole IoT network infrastructure. On the other hand, the SDN control plane has the capability to be orchestrated towards providing enhanced security services to all layers of the IoT networking stack. In this paper, we propose an SDN-enabled control plane based orchestration that leverages emerging Long Short-Term Memory (LSTM) classification models; a Deep Learning (DL) based architecture to combat malicious IoT nodes. It is a first step towards a new line of security mechanisms that enables the provision of scalable AI-based intrusion detection focusing on the operational assurance of only those specific, critical infrastructure components,thus, allowing for a much more efficient security solution. The proposed mechanism has been evaluated with current state of the art datasets (i.e., N\_BaIoT 2018) using standard performance evaluation metrics. Our preliminary results show an outstanding detection accuracy (i.e., 99.9%) which significantly outperforms state-of-the-art approaches. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security does not hinder the deployment of intelligent IoT-based computing systems.

2020-02-10
Koutroumpouchos, Nikos, Ntantogian, Christoforos, Menesidou, Sofia-Anna, Liang, Kaitai, Gouvas, Panagiotis, Xenakis, Christos, Giannetsos, Thanassis.  2019.  Secure Edge Computing with Lightweight Control-Flow Property-based Attestation. 2019 IEEE Conference on Network Softwarization (NetSoft). :84–92.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively verify software- and device-integrity in order to detect run-time modifications. Towards this direction, remote attestation has been proposed as a promising defense mechanism. It allows a third party, the verifier, to ensure the integrity of a remote device, the prover. However, this family of solutions do not capture the real-time requirements of industrial IoT applications and suffer from scalability and efficiency issues. In this paper, we present a lightweight dynamic control-flow property-based attestation architecture (CFPA) that can be applied on both resource-constrained edge and cloud devices and services. It is a first step towards a new line of security mechanisms that enables the provision of control-flow attestation of only those specific, critical software components that are comparatively small, simple and limited in function, thus, allowing for a much more efficient verification. Our goal is to enhance run-time software integrity and trustworthiness with a scalable and decentralized solution eliminating the need for federated infrastructure trust. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security do not hinder the deployment of intelligent edge computing systems.