Biblio
Filters: Author is Jang, Moonsu [Clear All Filters]
Cyber-Physical Battlefield Platform for Large-Scale Cybersecurity Exercises. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1–19.
.
2019. In this study, we propose a platform upon which a cyber security exercise environment can be built efficiently for national critical infrastructure protection, i.e. a cyber-physical battlefield (CPB), to simulate actual ICS/SCADA systems in operation. Among various design considerations, this paper mainly discusses scalability, mobility, reality, extensibility, consideration of the domain or vendor specificities, and the visualization of physical facilities and their damage as caused by cyber attacks. The main purpose of the study was to develop a platform that can maximize the coverage that encompasses such design considerations. We discuss the construction of the platform through the final design choices. The features of the platform that we attempt to achieve are closely related to the target cyber exercise format. Design choices were made considering the construction of a realistic ICS/SCADA exercise environment that meets the goals and matches the characteristics of the Cyber Conflict Exercise (CCE), an annual national exercise organized by the National Security Research Institute (NSR) of South Korea. CCE is a real-time attack-defense battlefield drill between 10 red teams who try to penetrate a multi-level organization network and 16 blue teams who try to defend the network. The exercise platform provides scalability and a significant degree of freedom in the design of a very large-scale CCE environment. It also allowed us to fuse techniques such as 3D-printing and augmented reality (AR) to achieve the exercise goals. This CPB platform can also be utilized in various ways for different types of cybersecurity exercise. The successful application of this platform in Locked Shields 2018 (LS18) is strong evidence of this; it showed the great potential of this platform to integrate high-level strategic or operational exercises effectively with low-level technical exercises. This paper also discusses several possible improvements of the platform which could be made for better integration, as well as various exercise environments that can be constructed given the scalability and extensibility of the platform.