Biblio
Skype has been a typical choice for providing VoIP service nowadays and is well-known for its broad range of features, including voice-calls, instant messaging, file transfer and video conferencing, etc. Considering its wide application, from the viewpoint of ISPs, it is essential to identify Skype flows and thus optimize network performance and forecast future needs. However, in general, a host is likely to run multiple network applications simultaneously, which makes it much harder to classify each and every Skype flow from mixed traffic exactly. Especially, current techniques usually focus on host-level identification and do not have the ability to identify Skype traffic at the flow-level. In this paper, we first reveal the unique sequence signatures of Skype UDP flows and then implement a practical online system named SkyTracer for precise Skype traffic identification. To the best of our knowledge, this is the first time to utilize the strong sequence signatures to carry out early identification of Skype traffic. The experimental results show that SkyTracer can achieve very high accuracy at fine-grained level in identifying Skype traffic.