Biblio
Filters: Author is Wang, Lijun [Clear All Filters]
Research on Space-Time Block Code Technology in MIMO System. 2021 7th International Conference on Computer and Communications (ICCC). :1875—1879.
.
2021. MIMO technology has been widely used in the telecommunication systems nowadays, and the space-time coding is a key part of MIMO technology. A good coding scheme can exploit the spatial diversity to correct the error which is generated in transmission, and increase the normalized transfer rate with low decoding complexity. On the Basis of the research on different Space-Time Block Codes, this essay proposes a new STBC, Diagonal Block Orthogonal Space-Time Block Code. Then we will compare it with other STBCs in the performance of bit error rate, transfer rate, decoding complexity and peek-to-average power ratio, the final result will prove the superiority of DBOAST.
Analysis of Frequency Offset for Satellite Navigation Receiver Using Carrier-Aided Code Tracking Loop. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :627–630.
.
2020. Carrier-aided code tracking loop is widely used in satellite navigation receivers. This kind of loop structure can reduce code tracking noise by narrowing the bandwidth of code tracking loop. The performance of carrier-aided code tracking loop in receivers is affected by frequency deviation of reference clock source. This paper analyzes the influence of carrier frequency offset and sampling frequency offset on carrier-aided code tracking loop due to reference clock offset. The results show that large frequency offset can cause code tracking loop lose lock, code tracking loop is more sensitive to sampling frequency deviation and increasing the loop bandwidth can reduce the effects of frequency offset. This analysis provides reference for receiver tracking loop design.
Demagnetization Modeling Research for Permanent Magnet in PMSLM Using Extreme Learning Machine. 2019 IEEE International Electric Machines Drives Conference (IEMDC). :1757–1761.
.
2019. This paper investigates the temperature demagnetization modeling method for permanent magnets (PM) in permanent magnet synchronous linear motor (PMSLM). First, the PM characteristics are presented, and finite element analysis (FEA) is conducted to show the magnetic distribution under different temperatures. Second, demagnetization degrees and remanence of the five PMs' experiment sample are actually measured in stove at temperatures varying from room temperature to 300 °C, and to obtain the real data for next-step modeling. Third, machine learning algorithm called extreme learning machine (ELM) is introduced to map the nonlinear relationships between temperature and demagnetization characteristics of PM and build the demagnetization models. Finally, comparison experiments between linear modeling method, polynomial modeling method, and ELM can certify the effectiveness and advancement of this proposed method.