Visible to the public Biblio

Filters: Author is Walters, John Paul  [Clear All Filters]
2020-02-26
Tran, Geoffrey Phi, Walters, John Paul, Crago, Stephen.  2019.  Increased Fault-Tolerance and Real-Time Performance Resiliency for Stream Processing Workloads through Redundancy. 2019 IEEE International Conference on Services Computing (SCC). :51–55.

Data analytics and telemetry have become paramount to monitoring and maintaining quality-of-service in addition to business analytics. Stream processing-a model where a network of operators receives and processes continuously arriving discrete elements-is well-suited for these needs. Current and previous studies and frameworks have focused on continuity of operations and aggregate performance metrics. However, real-time performance and tail latency are also important. Timing errors caused by either performance or failed communication faults also affect real-time performance more drastically than aggregate metrics. In this paper, we introduce redundancy in the stream data to improve the real-time performance and resiliency to timing errors caused by either performance or failed communication faults. We also address limitations in previous solutions using a fine-grained acknowledgment tracking scheme to both increase the effectiveness for resiliency to performance faults and enable effectiveness for failed communication faults. Our results show that fine-grained acknowledgment schemes can improve the tail and mean latencies by approximately 30%. We also show that these schemes can improve resiliency to performance faults compared to existing work. Our improvements result in 47.4% to 92.9% fewer missed deadlines compared to 17.3% to 50.6% for comparable topologies and redundancy levels in the state of the art. Finally, we show that redundancies of 25% to 100% can reduce the number of data elements that miss their deadline constraints by 0.76% to 14.04% for applications with high fan-out and by 7.45% up to 50% for applications with no fan-out.