Visible to the public Biblio

Filters: Author is Messai, Nadhir  [Clear All Filters]
2023-01-05
Laouiti, Dhia Eddine, Ayaida, Marwane, Messai, Nadhir, Najeh, Sameh, Najjar, Leila, Chaabane, Ferdaous.  2022.  Sybil Attack Detection in VANETs using an AdaBoost Classifier. 2022 International Wireless Communications and Mobile Computing (IWCMC). :217–222.
Smart cities are a wide range of projects made to facilitate the problems of everyday life and ensure security. Our interest focuses only on the Intelligent Transport System (ITS) that takes care of the transportation issues using the Vehicular Ad-Hoc Network (VANET) paradigm as its base. VANETs are a promising technology for autonomous driving that provides many benefits to the user conveniences to improve road safety and driving comfort. VANET is a promising technology for autonomous driving that provides many benefits to the user's conveniences by improving road safety and driving comfort. The problem with such rapid development is the continuously increasing digital threats. Among all these threats, we will target the Sybil attack since it has been proved to be one of the most dangerous attacks in VANETs. It allows the attacker to generate multiple forged identities to disseminate numerous false messages, disrupt safety-related services, or misuse the systems. In addition, Machine Learning (ML) is showing a significant influence on classification problems, thus we propose a behavior-based classification algorithm that is tested on the provided VeReMi dataset coupled with various machine learning techniques for comparison. The simulation results prove the ability of our proposed mechanism to detect the Sybil attack in VANETs.
2020-03-02
Ayaida, Marwane, Messai, Nadhir, Wilhelm, Geoffrey, Najeh, Sameh.  2019.  A Novel Sybil Attack Detection Mechanism for C-ITS. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :913–918.

Cooperative Intelligent Transport Systems (C-ITS) are expected to play an important role in our lives. They will improve the traffic safety and bring about a revolution on the driving experience. However, these benefits are counterbalanced by possible attacks that threaten not only the vehicle's security, but also passengers' lives. One of the most common attacks is the Sybil attack, which is even more dangerous than others because it could be the starting point of many other attacks in C-ITS. This paper proposes a distributed approach allowing the detection of Sybil attacks by using the traffic flow theory. The key idea here is that each vehicle will monitor its neighbourhood in order to detect an eventual Sybil attack. This is achieved by a comparison between the real accurate speed of the vehicle and the one estimated using the V2V communications with vehicles in the vicinity. The estimated speed is derived by using the traffic flow fundamental diagram of the road's portion where the vehicles are moving. This detection algorithm is validated through some extensive simulations conducted using the well-known NS3 network simulator with SUMO traffic simulator.