Visible to the public Biblio

Filters: Author is Qian, Yi  [Clear All Filters]
2023-04-28
Chen, Ligeng, He, Zhongling, Wu, Hao, Xu, Fengyuan, Qian, Yi, Mao, Bing.  2022.  DIComP: Lightweight Data-Driven Inference of Binary Compiler Provenance with High Accuracy. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :112–122.
Binary analysis is pervasively utilized to assess software security and test vulnerabilities without accessing source codes. The analysis validity is heavily influenced by the inferring ability of information related to the code compilation. Among the compilation information, compiler type and optimization level, as the key factors determining how binaries look like, are still difficult to be inferred efficiently with existing tools. In this paper, we conduct a thorough empirical study on the binary's appearance under various compilation settings and propose a lightweight binary analysis tool based on the simplest machine learning method, called DIComP to infer the compiler and optimization level via most relevant features according to the observation. Our comprehensive evaluations demonstrate that DIComP can fully recognize the compiler provenance, and it is effective in inferring the optimization levels with up to 90% accuracy. Also, it is efficient to infer thousands of binaries at a millisecond level with our lightweight machine learning model (1MB).
2020-03-02
Gyawali, Sohan, Qian, Yi.  2019.  Misbehavior Detection Using Machine Learning in Vehicular Communication Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Vehicular networks are susceptible to variety of attacks such as denial of service (DoS) attack, sybil attack and false alert generation attack. Different cryptographic methods have been proposed to protect vehicular networks from these kind of attacks. However, cryptographic methods have been found to be less effective to protect from insider attacks which are generated within the vehicular network system. Misbehavior detection system is found to be more effective to detect and prevent insider attacks. In this paper, we propose a machine learning based misbehavior detection system which is trained using datasets generated through extensive simulation based on realistic vehicular network environment. The simulation results demonstrate that our proposed scheme outperforms previous methods in terms of accurately identifying various misbehavior.