Visible to the public Biblio

Filters: Author is Shen, Jiachen  [Clear All Filters]
2022-07-15
Tang, Xiao, Cao, Zhenfu, Dong, Xiaolei, Shen, Jiachen.  2021.  PKMark: A Robust Zero-distortion Blind Reversible Scheme for Watermarking Relational Databases. 2021 IEEE 15th International Conference on Big Data Science and Engineering (BigDataSE). :72—79.
In this paper, we propose a zero-distortion blind reversible robust scheme for watermarking relational databases called PKMark. Data owner can declare the copyright of the databases or pursue the infringement by extracting the water-mark information embedded in the database. PKMark is mainly based on the primary key attribute of the tuple. So it does not depend on the type of the attribute, and can provide high-precision numerical attributes. PKMark uses RSA encryption on the watermark before embedding the watermark to ensure the security of the watermark information. Then we use RSA to sign the watermark cipher text so that the owner can verify the ownership of the watermark without disclosing the watermark. The watermark embedding and extraction are based on the hash value of the primary key, so the scheme has blindness and reversibility. In other words, the user can obtain the watermark information or restore the original database without comparing it to the original database. Our scheme also has almost excellent robustness against addition attacks, deletion attacks and alteration attacks. In addition, PKMark is resistant to additive attacks, allowing different users to embed multiple watermarks without interfering with each other, and it can indicate the sequence of watermark embedding so as to indicate the original copyright owner of the database. This watermarking scheme also allows data owners to detect whether the data has been tampered with.
2021-07-27
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
Ye, Yunxiu, Cao, Zhenfu, Shen, Jiachen.  2020.  Unbounded Key-Policy Attribute-Based Encryption with Black-Box Traceability. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1655—1663.
Attribute-based encryption received widespread attention as soon as it was proposed. However, due to its specific characteristics, some restrictions on attribute set are not flexible enough in actual operation. In addition, since access authorities are determined according to users' attributes, users sharing the same attributes are difficult to be distinguished. Once a malicious user makes illicit gains by their decryption authorities, it is difficult to track down specific user. This paper follows practical demands to propose a more flexible key-policy attribute-based encryption scheme with black-box traceability. The scheme has a constant size of public parameters which can be utilized to construct attribute-related parameters flexibly, and the method of traitor tracing in broadcast encryption is introduced to achieve effective malicious user tracing. In addition, the security and feasibility can be proved by the security proofs and performance evaluation in this paper.
2020-03-18
Ye, Fanghan, Dong, Xiaolei, Shen, Jiachen, Cao, Zhenfu, Zhao, Wenhua.  2019.  A Verifiable Dynamic Multi-user Searchable Encryption Scheme without Trusted Third Parties. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :896–900.
Searchable encryption is a cryptographic primitive that allows users to search for keywords on encrypted data. It allows users to search in archives stored on cloud servers. Among searchable encryption schemes, those supporting multiuser settings are more suitable for daily application scenarios and more practical. However, since the cloud server is semi-trusted, the result set returned by the server is undefined, and most existing multi-user searchable encryption schemes rely heavily on trusted third parties to manage user permission. To address these problems, verifiable multi-user searchable encryption schemes with dynamic management of user search permissions, weak trust on trusted third parties and are desirable. In this paper, we propose such a scheme. Our scheme manages user permission and key distribution without a trusted third party. User search permission and user access permission matrices are generated separately to manage user permissions dynamically. In addition, our scheme can verify the result set returned by the cloud server. We also show that our scheme is index and trapdoor indistinguishable under chosen keyword attacks in the random oracle model. Finally, a detailed comparison experiment is made by using the actual document data set, and the results show that our scheme is efficient and practical.