Visible to the public Biblio

Filters: Author is Fung, Carol  [Clear All Filters]
2021-08-11
Fung, Carol, Pillai, Yadunandan.  2020.  A Privacy-Aware Collaborative DDoS Defence Network. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—5.
Distributed denial of service (DDoS) attacks can bring tremendous damage to online services and ISPs. Existing adopted mitigation methods either require the victim to have a sufficient number of resources for traffic filtering or to pay a third party cloud service to filter the traffic. In our previous work we proposed CoFence, a collaborative network that allows member domains to help each other in terms of DDoS traffic handling. In that network, victim servers facing a DDoS attack can redirect excessive connection requests to other helping servers in different domains for filtering. Only filtered traffic will continue to interact with the victim server. However, sending traffic to third party servers brings up the issue of privacy: specifically leaked client source IP addresses. In this work we propose a privacy protection mechanism for defense so that the helping servers will not be able to see the IP address of the client traffic while it has minimum impact to the data filtering function. We implemented the design through a test bed to demonstrated the feasibility of the proposed design.
2020-03-23
Rustgi, Pulkit, Fung, Carol.  2019.  Demo: DroidNet - An Android Permission Control Recommendation System Based on Crowdsourcing. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :737–738.
Mobile and web application security, particularly the areas of data privacy, has raised much concerns from the public in recent years. Most applications, or apps for short, are installed without disclosing full information to users and clearly stating what the application has access to, which often raises concern when users become aware of unnecessary information being collected. Unfortunately, most users have little to no technical expertise in regards to what permissions should be turned on and can only rely on their intuition and past experiences to make relatively uninformed decisions. To solve this problem, we developed DroidNet, which is a crowd-sourced Android recommendation tool and framework. DroidNet alleviates privacy concerns and presents users with high confidence permission control recommendations based on the decision from expert users who are using the same apps. This paper explains the general framework, principles, and model behind DroidNet while also providing an experimental setup design which shows the effectiveness and necessity for such a tool.