Visible to the public Biblio

Filters: Author is Zheng, Yaowen  [Clear All Filters]
2020-03-23
Zheng, Yaowen, Song, Zhanwei, Sun, Yuyan, Cheng, Kai, Zhu, Hongsong, Sun, Limin.  2019.  An Efficient Greybox Fuzzing Scheme for Linux-based IoT Programs Through Binary Static Analysis. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1–8.

With the rapid growth of Linux-based IoT devices such as network cameras and routers, the security becomes a concern and many attacks utilize vulnerabilities to compromise the devices. It is crucial for researchers to find vulnerabilities in IoT systems before attackers. Fuzzing is an effective vulnerability discovery technique for traditional desktop programs, but could not be directly applied to Linux-based IoT programs due to the special execution environment requirement. In our paper, we propose an efficient greybox fuzzing scheme for Linux-based IoT programs which consist of two phases: binary static analysis and IoT program greybox fuzzing. The binary static analysis is to help generate useful inputs for efficient fuzzing. The IoT program greybox fuzzing is to reinforce the IoT firmware kernel greybox fuzzer to support IoT programs. We implement a prototype system and the evaluation results indicate that our system could automatically find vulnerabilities in real-world Linux-based IoT programs efficiently.