Biblio
The real-time map updating enables vehicles to obtain accurate and timely traffic information. Especially for driverless cars, real-time map updating can provide high-precision map service to assist the navigation, which requires vehicles to actively upload the latest road conditions. However, due to the untrusted network environment, it is difficult for the real-time map updating server to evaluate the authenticity of the road information from the vehicles. In order to prevent malicious vehicles from deliberately spreading false information and protect the privacy of vehicles from tracking attacks, this paper proposes a trust-based real-time map updating scheme. In this scheme, the public key is used as the identifier of the vehicle for anonymous communication with conditional anonymity. In addition, the blockchain is applied to provide the existence proof for the public key certificate of the vehicle. At the same time, to avoid the spread of false messages, a trust evaluation algorithm is designed. The fog node can validate the received massages from vehicles using Bayesian Inference Model. Based on the verification results, the road condition information is sent to the real-time map updating server so that the server can update the map in time and prevent the secondary traffic accident. In order to calculate the trust value offset for the vehicle, the fog node generates a rating for each message source vehicle, and finally adds the relevant data to the blockchain. According to the result of security analysis, this scheme can guarantee the anonymity and prevent the Sybil attack. Simulation results show that the proposed scheme is effective and accurate in terms of real-time map updating and trust values calculating.
Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.