Visible to the public Biblio

Filters: Author is Romagnoli, Raffaele  [Clear All Filters]
2021-12-20
Griffioen, Paul, Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.  2021.  Resilient Control in the Presence of Man-in-the-Middle Attacks. 2021 American Control Conference (ACC). :4553–4560.
Cyber-physical systems, which are ubiquitous in modern critical infrastructure, oftentimes rely on sending actuation commands and sensor measurements over a network, subjecting this information to potential man-in-the-middle attacks. These attacks can take the form of denial of service attacks or integrity attacks. Previous approaches at ensuring the resiliency of the overall control system against these types of attacks have leveraged functional redundancy in the system, including resilient estimation and reconfigurable control. However, these approaches are only able to ensure resiliency up to a particular subset of the actuator commands and sensor measurements being compromised. In contrast, we introduce a resiliency mechanism in this paper that can ensure safety for the overall system when all the actuator commands and sensor measurements are compromised. In addition, this approach does not require the implementation of any detection algorithm. We leverage communication redundancy in the number of pathways across the network to guarantee safety when up to a certain percentage of those pathways are compromised. The conditions under which safety is guaranteed are presented along with the resiliency mechanism itself, and our results are illustrated via simulation.
2020-03-27
Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.  2019.  Design of Software Rejuvenation for CPS Security Using Invariant Sets. 2019 American Control Conference (ACC). :3740–3745.

Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.