Visible to the public Biblio

Filters: Author is Vigil, Martín  [Clear All Filters]
2020-06-01
de Souza, Rick Lopes, Vigil, Martín, Custódio, Ricardo, Caullery, Florian, Moura, Lucia, Panario, Daniel.  2018.  Secret Sharing Schemes with Hidden Sets. 2018 IEEE Symposium on Computers and Communications (ISCC). :00713–00718.
Shamir's Secret Sharing Scheme is well established and widely used. It allows a so-called Dealer to split and share a secret k among n Participants such that at least t shares are needed to reconstruct k, where 0 \textbackslashtextbackslashtextless; t ≤ n. Nothing about the secret can be learned from less than t shares. To split secret k, the Dealer generates a polynomial f, whose independent term is k and the coefficients are randomly selected using a uniform distribution. A share is a pair (x, f(x)) where x is also chosen randomly using a uniform distribution. This scheme is useful, for example, to distribute cryptographic keys among different cloud providers and to create multi-factor authentication. The security of Shamir's Secret Sharing Scheme is usually analyzed using a threat model where the Dealer is trusted to split and share secrets as described above. In this paper, we demonstrate that there exists a different threat model where a malicious Dealer can compute shares such that a subset of less than t shares is allowed to reconstruct the secret. We refer to such subsets as hidden sets. We formally define hidden sets and prove lower bounds on the number of possible hidden sets for polynomials of degree t - 1. Yet, we show how to detect hidden sets given a set of n shares and describe how to create hidden sets while sharing a secret using a modification of Shamir's scheme.
2020-04-03
Nandi, Giann Spilere, Pereira, David, Vigil, Martín, Moraes, Ricardo, Morales, Analúcia Schiaffino, Araújo, Gustavo.  2019.  Security in Wireless Sensor Networks: A formal verification of protocols. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:425—431.

The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.