Visible to the public Biblio

Filters: Author is Kschischang, Frank R.  [Clear All Filters]
2020-04-06
Martínez-Peñas, Umberto, Kschischang, Frank R..  2018.  Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :702–709.
Multishot network coding is considered in a worst-case adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to ρ packets, and wire-tap up to μ links, all throughout ℓ shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ℓn'-2t-ρ-μ packets, where n' is the number of outgoing links at the source, for any packet length m ≥ n' (largest possible range), with only the restriction that ℓ\textbackslashtextless;q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. A Welch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ℓn', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.