Visible to the public Biblio

Filters: Author is Alamleh, Hosam  [Clear All Filters]
2022-04-26
AlQahtani, Ali Abdullah S., Alamleh, Hosam, El-Awadi, Zakaria.  2021.  Secure Digital Signature Validated by Ambient User amp;\#x2019;s Wi-Fi-enabled devices. 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). :159–162.

In cyberspace, a digital signature is a mathematical technique that plays a significant role, especially in validating the authenticity of digital messages, emails, or documents. Furthermore, the digital signature mechanism allows the recipient to trust the authenticity of the received message that is coming from the said sender and that the message was not altered in transit. Moreover, a digital signature provides a solution to the problems of tampering and impersonation in digital communications. In a real-life example, it is equivalent to a handwritten signature or stamp seal, but it offers more security. This paper proposes a scheme to enable users to digitally sign their communications by validating their identity through users’ mobile devices. This is done by utilizing the user’s ambient Wi-Fi-enabled devices. Moreover, the proposed scheme depends on something that a user possesses (i.e., Wi-Fi-enabled devices), and something that is in the user’s environment (i.e., ambient Wi-Fi access points) where the validation process is implemented, in a way that requires no effort from users and removes the "weak link" from the validation process. The proposed scheme was experimentally examined.

2021-07-08
AlQahtani, Ali Abdullah S, Alamleh, Hosam, Gourd, Jean, Alnuhait, Hend.  2020.  TS2FA: Trilateration System Two Factor Authentication. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Two-factor authentication (2FA) systems implement by verifying at least two factors. A factor is something a user knows (password, or phrase), something a user possesses (smart card, or smartphone), something a user is (fingerprint, or iris), something a user does (keystroke), or somewhere a user is (location). In the existing 2FA system, a user is required to act in order to implement the second layer of authentication which is not very user-friendly. Smart devices (phones, laptops, tablets, etc.) can receive signals from different radio frequency technologies within range. As these devices move among networks (Wi-Fi access points, cellphone towers, etc.), they receive broadcast messages, some of which can be used to collect information. This information can be utilized in a variety of ways, such as establishing a connection, sharing information, locating devices, and, most appropriately, identifying users in range. The principal benefit of broadcast messages is that the devices can read and process the embedded information without being connected to the broadcaster. Moreover, the broadcast messages can be received only within range of the wireless access point sending the broadcast, thus inherently limiting access to those devices in close physical proximity and facilitating many applications dependent on that proximity. In the proposed research, a new factor is used - something that is in the user's environment with minimal user involvement. Data from these broadcast messages is utilized to implement a 2FA scheme by determining whether two devices are proximate or not to ensure that they belong to the same user.
2020-04-06
Alamleh, Hosam, AlQahtani, Ali Abdullah S..  2020.  Two Methods for Authentication Using Variable Transmission Power Patterns. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0355–0358.
In the last decade, the adoption of wireless systems has increased. These systems allow multiple devices to send data wirelessly using radio waves. Moreover, in some applications, authentication is done wirelessly by exchanging authentication data over the air as in wireless locks and keyless entry systems. On the other hand, most of the wireless devices today can control the radio frequency transmission power to optimize the system's performance and minimize interference. In this paper, we explore the possibility of modulating the radio frequency transmission power in wireless systems for authentication purposes and using it for source authentication. Furthermore, we propose two system models that perform authentication using variable power transmission patterns. Then, we discuss possible applications. Finally, we implement and test a prototype system using IEEE 802.11 (Wi-Fi) devices.