Visible to the public Biblio

Filters: Author is Pahl, Claus  [Clear All Filters]
2022-08-03
Le, Van Thanh, El Ioini, Nabil, Pahl, Claus, Barzegar, Hamid R., Ardagna, Claudio.  2021.  A Distributed Trust Layer for Edge Infrastructure. 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC). :1—8.
Recently, Mobile Edge Cloud computing (MEC) has attracted attention both from academia and industry. The idea of moving a part of cloud resources closer to users and data sources can bring many advantages in terms of speed, data traffic, security and context-aware services. The MEC infrastructure does not only host and serves applications next to the end-users, but services can be dynamically migrated and reallocated as mobile users move in order to guarantee latency and performance constraints. This specific requirement calls for the involvement and collaboration of multiple MEC providers, which raises a major issue related to trustworthiness. Two main challenges need to be addressed: i) trustworthiness needs to be handled in a manner that does not affect latency or performance, ii) trustworthiness is considered in different dimensions - not only security metrics but also performance and quality metrics in general. In this paper, we propose a trust layer for public MEC infrastructure that handles establishing and updating trust relations among all MEC entities, making the interaction withing a MEC network transparent. First, we define trust attributes affecting the trusted quality of the entire infrastructure and then a methodology with a computation model that combines these trust attribute values. Our experiments showed that the trust model allows us to reduce latency by removing the burden from a single MEC node, while at the same time increase the network trustworthiness.
2020-04-13
Agostino Ardagna, Claudio, Asal, Rasool, Damiani, Ernesto, El Ioini, Nabil, Pahl, Claus.  2019.  Trustworthy IoT: An Evidence Collection Approach Based on Smart Contracts. 2019 IEEE International Conference on Services Computing (SCC). :46–50.
Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain.