Visible to the public Biblio

Filters: Author is Tang, Lu-An  [Clear All Filters]
2019-06-10
Luo, Chen, Chen, Zhengzhang, Tang, Lu-An, Shrivastava, Anshumali, Li, Zhichun, Chen, Haifeng, Ye, Jieping.  2018.  TINET: Learning Invariant Networks via Knowledge Transfer. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1890-1899.

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.

Cao, Cheng, Chen, Zhengzhang, Caverlee, James, Tang, Lu-An, Luo, Chen, Li, Zhichun.  2018.  Behavior-Based Community Detection: Application to Host Assessment In Enterprise Information Networks. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1977-1985.

Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host's anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

2015-05-06
Tang, Lu-An, Han, Jiawei, Jiang, Guofei.  2014.  Mining sensor data in cyber-physical systems. Tsinghua Science and Technology. 19:225-234.

A Cyber-Physical System (CPS) integrates physical devices (i.e., sensors) with cyber (i.e., informational) components to form a context sensitive system that responds intelligently to dynamic changes in real-world situations. Such a system has wide applications in the scenarios of traffic control, battlefield surveillance, environmental monitoring, and so on. A core element of CPS is the collection and assessment of information from noisy, dynamic, and uncertain physical environments integrated with many types of cyber-space resources. The potential of this integration is unbounded. To achieve this potential the raw data acquired from the physical world must be transformed into useable knowledge in real-time. Therefore, CPS brings a new dimension to knowledge discovery because of the emerging synergism of the physical and the cyber. The various properties of the physical world must be addressed in information management and knowledge discovery. This paper discusses the problems of mining sensor data in CPS: With a large number of wireless sensors deployed in a designated area, the task is real time detection of intruders that enter the area based on noisy sensor data. The framework of IntruMine is introduced to discover intruders from untrustworthy sensor data. IntruMine first analyzes the trustworthiness of sensor data, then detects the intruders' locations, and verifies the detections based on a graph model of the relationships between sensors and intruders.