Biblio
Filters: Author is Zhang, Xu [Clear All Filters]
Cross-Security Domain Dynamic Orchestration Algorithm of Network Security Functions. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :413—419.
.
2022. To prevent all sorts of attacks, the technology of security service function chains (SFC) is proposed in recent years, it becomes an attractive research highlights. Dynamic orchestration algorithm can create SFC according to the resource usage of network security functions. The current research on creating SFC focuses on a single domain. However in reality the large and complex networks are divided into security domains according to different security levels and managed separately. Therefore, we propose a cross-security domain dynamic orchestration algorithm to create SFC for network security functions based on ant colony algorithm(ACO) and consider load balancing, shortest path and minimum delay as optimization objectives. We establish a network security architecture based on the proposed algorithm, which is suitable for the industrial vertical scenarios, solves the deployment problem of the dynamic orchestration algorithm. Simulation results verify that our algorithm achieves the goal of creating SFC across security domains and demonstrate its performance in creating service function chains to resolve abnormal traffic flows.
Policy Network Assisted Monte Carlo Tree Search for Intelligent Service Function Chain Deployment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1161—1168.
.
2021. Network function virtualization (NFV) simplies the coniguration and management of security services by migrating the network security functions from dedicated hardware devices to software middle-boxes that run on commodity servers. Under the paradigm of NFV, the service function chain (SFC) consisting of a series of ordered virtual network security functions is becoming a mainstream form to carry network security services. Allocating the underlying physical network resources to the demands of SFCs under given constraints over time is known as the SFC deployment problem. It is a crucial issue for infrastructure providers. However, SFC deployment is facing new challenges in trading off between pursuing the objective of a high revenue-to-cost ratio and making decisions in an online manner. In this paper, we investigate the use of reinforcement learning to guide online deployment decisions for SFC requests and propose a Policy network Assisted Monte Carlo Tree search approach named PACT to address the above challenge, aiming to maximize the average revenue-to-cost ratio. PACT combines the strengths of the policy network, which evaluates the placement potential of physical servers, and the Monte Carlo Tree Search, which is able to tackle problems with large state spaces. Extensive experimental results demonstrate that our PACT achieves the best performance and is superior to other algorithms by up to 30% and 23.8% on average revenue-to-cost ratio and acceptance rate, respectively.
Power system real time data encryption system based on DES algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :220–228.
.
2021. To ensure the safe operation of power system, this paper studies two technologies of data encryption and digital signature, and designs a real-time data encryption system based on DES algorithm, which improves the security of data network communication. The real-time data encryption system of power system is optimized by the hybrid encryption system based on DES algorithm. The real-time data encryption of power system adopts triple DES algorithm, and double DES encryption algorithm of RSA algorithm to ensure the security of triple DES encryption key, which solves the problem of real-time data encryption management of power system. Java security packages are used to implement digital signatures that guarantee data integrity and non-repudiation. Experimental results show that the data encryption system is safe and effective.
PCHA: A Fast Packet Classification Algorithm For IPv6 Based On Hash And AVL Tree. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :397–404.
.
2020. As the core infrastructure of cloud data operation, exchange and storage, data centerneeds to ensure its security and reliability, which are the important prerequisites for the development of cloud computing. Due to various illegal accesses, attacks, viruses and other security threats, it is necessary to protect the boundary of cloud data center through security gateway. Since the traffic growing up to gigabyte level, the secure gateway must ensure high transmission efficiency and different network services to support the cloud services. In addition, data center is gradually evolving from IPv4 to IPv6 due to excessive consumption of IP addresses. Packet classification algorithm, which can divide packets into different specific streams, is very important for QoS, real-time data stream application and firewall. Therefore, it is necessary to design a high performance IPv6 packet classification algorithm suitable for security gateway.AsIPv6 has a128-bitIP address and a different packet structure compared with IPv4, the traditional IPv4 packet classification algorithm is not suitable properly for IPv6 situations. This paper proposes a fast packet classification algorithm for IPv6 - PCHA (packet classification based on hash andAdelson-Velsky-Landis Tree). It adopts the three flow classification fields of source IPaddress(SA), destination IPaddress(DA) and flow label(FL) in the IPv6 packet defined by RFC3697 to implement fast three-tuple matching of IPv6 packet. It is through hash matching of variable length IPv6 address and tree matching of shorter flow label. Analysis and testing show that the algorithm has a time complexity close to O(1) in the acceptable range of space complexity, which meets the requirements of fast classification of IPv6 packetsand can adapt well to the changes in the size of rule sets, supporting fast preprocessing of rule sets. Our algorithm supports the storage of 500,000 3-tuple rules on the gateway device and can maintain 75% of the performance of throughput for small packets of 78 bytes.
Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :73—77.
.
2018. Research on network security situation awareness is currently a research hotspot in the field of network security. It is one of the easiest and most effective methods to use the BP neural network for security situation prediction. However, there are still some problems in BP neural network, such as slow convergence rate, easy to fall into local extremum, etc. On the other hand, some common used evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), easily fall into local optimum. Hybrid rice optimization algorithm is a newly proposed algorithm with strong search ability, so the method of this paper is proposed. This article describes in detail the use of BP network security posture prediction method. In the proposed method, HRO is used to train the connection weights of the BP network. Through the advantages of HRO global search and fast convergence, the future security situation of the network is predicted, and the accuracy of the situation prediction is effectively improved.