Visible to the public Biblio

Filters: Author is Di, Xiaoqiang  [Clear All Filters]
2022-04-19
Wang, Chunbo, Li, Peipei, Zhang, Aowei, Qi, Hui, Cong, Ligang, Xie, Nannan, Di, Xiaoqiang.  2021.  Secure Data Deduplication And Sharing Method Based On UMLE And CP-ABE. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). :127–132.
In the era of big data, more and more users store data in the cloud. Massive amounts of data have brought huge storage costs to cloud storage providers, and data deduplication technology has emerged. In order to protect the confidentiality of user data, user data should be encrypted and stored in the cloud. Therefore, deduplication of encrypted data has become a research hotspot. Cloud storage provides users with data sharing services, and the sharing of encrypted data is another research hotspot. The combination of encrypted data deduplication and sharing will inevitably become a future trend. The current better-performing updateable block-level message-locked encryption (UMLE) deduplication scheme does not support data sharing, and the performance of the encrypted data de-duplication scheme that introduces data sharing is not as good as that of UMLE. This paper introduces the ciphertext policy attribute based encryption (CP-ABE) system sharing mechanism on the basis of UMLE, applies the CP-ABE method to encrypt the master key generated by UMLE, to achieve secure and efficient data deduplication and sharing. In this paper, we propose a permission verification method based on bilinear mapping, and according to the definition of the security model proposed in the security analysis phase, we prove this permission verification method, showing that our scheme is secure. The comparison of theoretical analysis and simulation experiment results shows that this scheme has more complete functions and better performance than existing schemes, and the proposed authorization verification method is also secure.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.