Biblio
Filters: Author is Li, Guoquan [Clear All Filters]
A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
.
2019. Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
A Study and Simulation Research of Blackhole Attack on Mobile AdHoc Network. 2018 IEEE Conference on Communications and Network Security (CNS). :1–6.
.
2018. Mobile ad hoc network (MANET) is a kind of mobile multi-hop network which can transmit data through intermediate nodes, it has been widely used and become important since the growing of the market of Internet of Things (IoT). However, the transmissions on MANET are vulnerable, it usually suffered with many internal or external attacks, and the research on security topics of MANET are becoming more and more hot recently. Blackhole Attack is one of the most famous attacks to MANET. In this paper, we focus on the Blackhole Attack in AODV protocol, and use NS-3 network simulator to study the impact of Blackhole Attack on network performance parameters, such as the Throughput, End-to-End Delay and Packet Loss Rate. We further analyze the changes in network performance by adjusting the number of blackhole nodes and total nodes, and the movement speed of mobile nodes. The experimental results not only reflect the behaviors of the Blackhole Attack and its damage to the network, but also provide the characteristics of Blackhole Attacks clearly. This is helpful to the research of Blackhole Attack feature extraction and MANET security measurement.