Biblio
Filters: Author is Bouk, Safdar Hussain [Clear All Filters]
Named Data Networking's Intrinsic Cyber-Resilience for Vehicular CPS. IEEE Access. 6:60570–60585.
.
2018. Modern vehicles equipped with a large number of electronic components, sensors, actuators, and extensive connectivity, are the classical example of cyber-physical systems (CPS). Communication as an integral part of the CPS has enabled and offered many value-added services for vehicular networks. The communication mechanism helps to share contents with all vehicular network nodes and the surrounding environment, e.g., vehicles, traffic lights, and smart road signs, to efficiently take informed and smart decisions. Thus, it opens the doors to many security threats and vulnerabilities. Traditional TCP/IP-based communication paradigm focuses on securing the communication channel instead of the contents that travel through the network. Nevertheless, for content-centered application, content security is more important than communication channel security. To this end, named data networking (NDN) is one of the future Internet architectures that puts the contents at the center of communication and offers embedded content security. In this paper, we first identify the cyberattacks and security challenges faced by the vehicular CPS (VCPS). Next, we propose the NDN-based cyber-resilient, the layered and modular architecture for VCPS. The architecture includes the NDN's forwarding daemon, threat aversion, detection, and resilience components. A detailed discussion about the functionality of each component is also presented. Furthermore, we discuss the future challenges faced by the integration of NDN with VCPS to realize NDN-based VCPS.
Conference Name: IEEE Access
Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1–7.
.
2018. Vehicular Named Data Network (VNDN) uses NDN as an underlying communication paradigm to realize intelligent transportation system applications. Content communication is the essence of NDN, which is primarily carried out through content naming, forwarding, intrinsic content security, and most importantly the in-network caching. In vehicular networks, vehicles on the road communicate with other vehicles and/or infrastructure network elements to provide passengers a reliable, efficient, and infotainment-rich commute experience. Recently, different aspects of NDN have been investigated in vehicular networks and in vehicular social networks (VSN); however, in this paper, we investigate the in-network caching, realized in NDN through the content store (CS) data structure. As the stale contents in CS do not just occupy cache space, but also decrease the overall performance of NDN-driven VANET and VSN applications, therefore the size of CS and the content lifetime in CS are primary issues in VNDN communications. To solve these issues, we propose a simple yet efficient multi-metric CS management mechanism through cache replacement (M2CRP). We consider the content popularity, relevance, freshness, and distance of a node to devise a set of algorithms for selection of the content to be replaced in CS in the case of replacement requirement. Simulation results show that our multi-metric strategy outperforms the existing cache replacement mechanisms in terms of Hit Ratio.