Visible to the public Biblio

Filters: Author is Khelifi, Hakima  [Clear All Filters]
2023-03-31
Khelifi, Hakima, Belouahri, Amani.  2022.  The Impact of Big Data Analytics on Traffic Prediction. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1–6.
The Internet of Vehicles (IoVs) performs the rapid expansion of connected devices. This massive number of devices is constantly generating a massive and near-real-time data stream for numerous applications, which is known as big data. Analyzing such big data to find, predict, and control decisions is a critical solution for IoVs to enhance service quality and experience. Thus, the main goal of this paper is to study the impact of big data analytics on traffic prediction in IoVs. In which we have used big data analytics steps to predict the traffic flow, and based on different deep neural models such as LSTM, CNN-LSTM, and GRU. The models are validated using evaluation metrics, MAE, MSE, RMSE, and R2. Hence, a case study based on a real-world road is used to implement and test the efficiency of the traffic prediction models.
2020-05-29
Khelifi, Hakima, Luo, Senlin, Nour, Boubakr, Moungla, Hassine.  2019.  A QoS-Aware Cache Replacement Policy for Vehicular Named Data Networks. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Vehicular Named Data Network (VNDN) uses Named Data Network (NDN) as a communication enabler. The communication is achieved using the content name instead of the host address. NDN integrates content caching at the network level rather than the application level. Hence, the network becomes aware of content caching and delivering. The content caching is a fundamental element in VNDN communication. However, due to the limitations of the cache store, only the most used content should be cached while the less used should be evicted. Traditional caching replacement policies may not work efficiently in VNDN due to the large and diverse exchanged content. To solve this issue, we propose an efficient cache replacement policy that takes the quality of service into consideration. The idea consists of classifying the traffic into different classes, and split the cache store into a set of sub-cache stores according to the defined traffic classes with different storage capacities according to the network requirements. Each content is assigned a popularity-density value that balances the content popularity with its size. Content with the highest popularity-density value is cached while the lowest is evicted. Simulation results prove the efficiency of the proposed solution to enhance the overall network quality of service.