Biblio
Filters: Author is Elleithy, Khaled [Clear All Filters]
A Multi-Layered Defense Approach to Safeguard Against Ransomware. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0942–0947.
.
2021. There has been a significant rise in ransomware attacks over the last few years. Cyber attackers have made use of tried and true ransomware viruses to target the government, health care, and educational institutions. Ransomware variants can be purchased on the dark web by amateurs giving them the same attack tools used by professional cyber attackers without experience or skill. Traditional antivirus and antimalware products have improved, but they alone fall short when it comes to catching and stopping ransomware attacks. Employee training has become one of the most important aspects of being prepared for attempted cyberattacks. However, training alone only goes so far; human error is still the main entry point for malware and ransomware infections. In this paper, we propose a multi-layered defense approach to safeguard against ransomware. We have come to the startling realization that it is not a matter of “if” your organization will be hit with ransomware, but “when” your organization will be hit with ransomware. If an organization is not adequately prepared for an attack or how to respond to an attack, the effects can be costly and devastating. Our approach proposes having innovative antimalware software on the local machines, properly configured firewalls, active DNS/Web filtering, email security, backups, and staff training. With the implementation of this layered defense, the attempt can be caught and stopped at multiple points in the event of an attempted ransomware attack. If the attack were successful, the layered defense provides the option for recovery of affected data without paying a ransom.
A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
.
2018. Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.