Visible to the public Biblio

Filters: Author is Ye, Xiaozhou  [Clear All Filters]
2020-06-12
Liu, Yujie, Su, Yixin, Ye, Xiaozhou, Qi, Yue.  2019.  Research on Extending Person Re-identification Datasets Based on Generative Adversarial Network. 2019 Chinese Automation Congress (CAC). :3280—3284.

Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.