Visible to the public Biblio

Filters: Author is Long, Yihong  [Clear All Filters]
2021-09-16
Wang, Meng, Long, Yihong.  2020.  SM9 Digital Signature with Non-Repudiation. 2020 16th International Conference on Computational Intelligence and Security (CIS). :356–361.
SM9 is an identity-based cryptography algorithm published by the State Cryptography Administration of China. With SM9, a user's private key for signing is generated by a central system called key generation center (KGC). When the owner of the private key wants to shirk responsibility by denying that the signature was generated by himself, he can claim that the operator of KGC forged the signature using the generated private key. To address this issue, in this paper, two schemes of SM9 digital signature with non-repudiation are proposed. With the proposed schemes, the user's private key for signing is collaboratively generated by two separate components, one of which is deployed in the private key service provider's site while the other is deployed in the user's site. The private key can only be calculated in the user's site with the help of homomorphic encryption. Therefore, only the user can obtain the private key and he cannot deny that the signature was generated by himself. The proposed schemes can achieve the non-repudiation of SM9 digital signature.
2020-06-22
Long, Yihong, Cheng, Minyang.  2019.  Secret Sharing Based SM2 Digital Signature Generation using Homomorphic Encryption. 2019 15th International Conference on Computational Intelligence and Security (CIS). :252–256.
SM2 is an elliptic curve public key cryptography algorithm released by the State Cryptography Administration of China. It includes digital signature, data encryption and key exchange schemes. To meet specific application requirements, such as to protect the user's private key in software only implementation, and to facilitate secure cloud cryptography computing, secret sharing based SM2 signature generation schemes have been proposed in the literature. In this paper a new such kind of scheme based upon additively homomorphic encryption is proposed. The proposed scheme overcomes the drawback that the existing schemes have and is more secure. It is useful in various application scenarios.