Visible to the public Biblio

Filters: Author is Merli, Dominik  [Clear All Filters]
2022-12-09
Doebbert, Thomas Robert, Fischer, Florian, Merli, Dominik, Scholl, Gerd.  2022.  On the Security of IO-Link Wireless Communication in the Safety Domain. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.

Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures.Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered.Therefore, this work analyzes security aspects for the wireless communication protocol IO-Link Wireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently [1].In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements.This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations.

2020-06-26
Niedermaier, Matthias, Fischer, Florian, Merli, Dominik, Sigl, Georg.  2019.  Network Scanning and Mapping for IIoT Edge Node Device Security. 2019 International Conference on Applied Electronics (AE). :1—6.

The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.