Visible to the public Biblio

Filters: Author is Ran, Qiong  [Clear All Filters]
2020-07-03
Li, Feiyan, Li, Wei, Huo, Hongtao, Ran, Qiong.  2019.  Decision Fusion Based on Joint Low Rank and Sparse Component for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :401—404.

Sparse and low rank matrix decomposition is a method that has recently been developed for estimating different components of hyperspectral data. The rank component is capable of preserving global data structures of data, while a sparse component can select the discriminative information by preserving details. In order to take advantage of both, we present a novel decision fusion based on joint low rank and sparse component (DFJLRS) method for hyperspectral imagery in this paper. First, we analyzed the effects of different components on classification results. Then a novel method adopts a decision fusion strategy which combines a SVM classifier with the information provided by joint sparse and low rank components. With combination of the advantages, the proposed method is both representative and discriminative. The proposed algorithm is evaluated using several hyperspectral images when compared with traditional counterparts.