Visible to the public Biblio

Filters: Author is Kumar, Sumit  [Clear All Filters]
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
2023-01-06
S, Harichandana B S, Agarwal, Vibhav, Ghosh, Sourav, Ramena, Gopi, Kumar, Sumit, Raja, Barath Raj Kandur.  2022.  PrivPAS: A real time Privacy-Preserving AI System and applied ethics. 2022 IEEE 16th International Conference on Semantic Computing (ICSC). :9—16.
With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data. achieves an F1-score of 73.1%.
2021-06-28
Miatra, Ayati, Kumar, Sumit.  2020.  Security Issues With Fog Computing. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :123–128.
Fog computing or edge computing or fogging extends cloud computing to the edge of the network. It operates on the computing, storage and networking services between user-end devices and cloud computing data centres. However, in the process of caring out these operations, fog computing is faced with several security issues. These issues may be inherited from cloud computing systems or may arise due to fog computing systems alone. Some of the major gaps in providing a secure platform for the fog computing process arise from interim operational steps like authentication or identification, which often expands to large scale performance issues in fog computing. Thus, these issues and their implications on fog computing databases, and the possible available solutions are researched and provided for a better scope of future use and growth of fog computing systems by bridging the gaps of security issues in it.
2020-07-03
Bhandari, Chitra, Kumar, Sumit, Chauhan, Sudha, Rahman, M A, Sundaram, Gaurav, Jha, Rajib Kumar, Sundar, Shyam, Verma, A R, Singh, Yashvir.  2019.  Biomedical Image Encryption Based on Fractional Discrete Cosine Transform with Singular Value Decomposition and Chaotic System. 2019 International Conference on Computing, Power and Communication Technologies (GUCON). :520—523.

In this paper, new image encryption based on singular value decomposition (SVD), fractional discrete cosine transform (FrDCT) and the chaotic system is proposed for the security of medical image. Reliability, vitality, and efficacy of medical image encryption are strengthened by it. The proposed method discusses the benefits of FrDCT over fractional Fourier transform. The key sensitivity of the proposed algorithm for different medical images inspires us to make a platform for other researchers. Theoretical and statistical tests are carried out demonstrating the high-level security of the proposed algorithm.