Visible to the public Biblio

Filters: Author is Shetty, Sachin  [Clear All Filters]
2022-12-01
Kamhoua, Georges, Bandara, Eranga, Foytik, Peter, Aggarwal, Priyanka, Shetty, Sachin.  2021.  Resilient and Verifiable Federated Learning against Byzantine Colluding Attacks. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :31–40.
Federated Learning (FL) is a multiparty learning computing approach that can aid privacy-preservation machine learning. However, FL has several potential security and privacy threats. First, the existing FL requires a central coordinator for the learning process which brings a single point of failure and trust issues for the shared trained model. Second, during the learning process, intentionally unreliable model updates performed by Byzantine colluding parties can lower the quality and convergence of the shared ML models. Therefore, discovering verifiable local model updates (i.e., integrity or correctness) and trusted parties in FL becomes crucial. In this paper, we propose a resilient and verifiable FL algorithm based on a reputation scheme to cope with unreliable parties. We develop a selection algorithm for task publisher and blockchain-based multiparty learning architecture approach where local model updates are securely exchanged and verified without the central party. We also proposed a novel auditing scheme to ensure our proposed approach is resilient up to 50% Byzantine colluding attack in a malicious scenario.
2022-09-30
Bandara, Eranga, Liang, Xueping, Foytik, Peter, Shetty, Sachin, Zoysa, Kasun De.  2021.  A Blockchain and Self-Sovereign Identity Empowered Digital Identity Platform. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
Most of the existing identity systems are built on top of centralized storage systems. Storing identity data on these types of centralized storage platforms(e.g cloud storage, central servers) becomes a major privacy concern since various types of attacks and data breaches can happen. With this research, we are proposing blockchain and self-sovereign identity based digital identity (KYC - Know Your Customer) platform “Casper” to address the issues on centralized identity systems. “Casper ” is an Android/iOS based mobile identity wallet application that combines the integration of blockchain and a self-sovereign identity-based approach. Unlike centralized identity systems, the actual identities of the customer/users are stored in the customers’ mobile wallet application. The proof of these identities is stored in the blockchain-based decentralized storage as a self-sovereign identity proof. Casper platforms’ Self-Sovereign Identity(SSI)-based system provides a Zero Knowledge Proof(ZKP) mechanism to verify the identity information. Casper platform can be adopted in various domains such as healthcare, banking, government organization etc. As a use case, we have discussed building a digital identity wallet for banking customers with the Casper platform. Casper provides a secure, decentralized and ZKP verifiable identity by using blockchain and SSI based approach. It addresses the common issues in centralized/cloud-based identity systems platforms such as the lack of data immutability, lack of traceability, centralized control etc.
2020-08-28
Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.  2019.  ICS-CRAT: A Cyber Resilience Assessment Tool for Industrial Control Systems. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :273—281.

In this work, we use a subjective approach to compute cyber resilience metrics for industrial control systems. We utilize the extended form of the R4 resilience framework and span the metrics over physical, technical, and organizational domains of resilience. We develop a qualitative cyber resilience assessment tool using the framework and a subjective questionnaire method. We make sure the questionnaires are realistic, balanced, and pertinent to ICS by involving subject matter experts into the process and following security guidelines and standards practices. We provide detail mathematical explanation of the resilience computation procedure. We discuss several usages of the qualitative tool by generating simulation results. We provide a system architecture of the simulation engine and the validation of the tool. We think the qualitative simulation tool would give useful insights for industrial control systems' overall resilience assessment and security analysis.

2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
Davenport, Amanda, Shetty, Sachin.  2019.  Modeling Threat of Leaking Private Keys from Air-Gapped Blockchain Wallets. 2019 IEEE International Smart Cities Conference (ISC2). :9—13.

In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.

Davenport, Amanda, Shetty, Sachin.  2019.  Air Gapped Wallet Schemes and Private Key Leakage in Permissioned Blockchain Platforms. 2019 IEEE International Conference on Blockchain (Blockchain). :541—545.

In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.

2020-07-20
Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.  2019.  Modeling Cyber Resilience for Energy Delivery Systems Using Critical System Functionality. 2019 Resilience Week (RWS). 1:33–41.

In this paper, we analyze the cyber resilience for the energy delivery systems (EDS) using critical system functionality (CSF). Some research works focus on identification of critical cyber components and services to address the resiliency for the EDS. Analysis based on the devices and services excluding the system behavior during an adverse event would provide partial analysis of cyber resilience. To address the gap, in this work, we utilize the vulnerability graph representation of EDS to compute the system functionality under adverse condition. We use network criticality metric to determine CSF. We estimate the criticality metric using graph Laplacian matrix and network performance after removing links (i.e., disabling control functions, or services). We model the resilience of the EDS using CSF, and system recovery curve. We also provide a comprehensive analysis of cyber resilience by determining the critical devices using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytical Hierarchy Process) methods. We present use cases of EDS illustrating the way control functions and services in EDS map to the vulnerability graph model. The simulation results show that we can estimate the resilience metric using different types of graphs that may assist in making an informed decision about EDS resilience.

2020-07-06
Hasan, Kamrul, Shetty, Sachin, Hassanzadeh, Amin, Ullah, Sharif.  2019.  Towards Optimal Cyber Defense Remediation in Cyber Physical Systems by Balancing Operational Resilience and Strategic Risk. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.

A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.