Visible to the public Biblio

Filters: Author is Liu, Baojun  [Clear All Filters]
2023-01-06
Xu, Huikai, Yu, Miao, Wang, Yanhao, Liu, Yue, Hou, Qinsheng, Ma, Zhenbang, Duan, Haixin, Zhuge, Jianwei, Liu, Baojun.  2022.  Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
2022-03-14
Li, Xiang, Liu, Baojun, Zheng, Xiaofeng, Duan, Haixin, Li, Qi, Huang, Youjun.  2021.  Fast IPv6 Network Periphery Discovery and Security Implications. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :88–100.
Numerous measurement researches have been performed to discover the IPv4 network security issues by leveraging the fast Internet-wide scanning techniques. However, IPv6 brings the 128-bit address space and renders brute-force network scanning impractical. Although significant efforts have been dedicated to enumerating active IPv6 hosts, limited by technique efficiency and probing accuracy, large-scale empirical measurement studies under the increasing IPv6 networks are infeasible now. To fill this research gap, by leveraging the extensively adopted IPv6 address allocation strategy, we propose a novel IPv6 network periphery discovery approach. Specifically, XMap, a fast network scanner, is developed to find the periphery, such as a home router. We evaluate it on twelve prominent Internet service providers and harvest 52M active peripheries. Grounded on these found devices, we explore IPv6 network risks of the unintended exposed security services and the flawed traffic routing strategies. First, we demonstrate the unintended exposed security services in IPv6 networks, such as DNS, and HTTP, have become emerging security risks by analyzing 4.7M peripheries. Second, by inspecting the periphery's packet routing strategies, we present the flawed implementations of IPv6 routing protocol affecting 5.8M router devices. Attackers can exploit this common vulnerability to conduct effective routing loop attacks, inducing DoS to the ISP's and home routers with an amplification factor of \textbackslashtextbackslashgt 200. We responsibly disclose those issues to all involved vendors and ASes and discuss mitigation solutions. Our research results indicate that the security community should revisit IPv6 network strategies immediately.
2020-07-10
Mi, Xianghang, Feng, Xuan, Liao, Xiaojing, Liu, Baojun, Wang, XiaoFeng, Qian, Feng, Li, Zhou, Alrwais, Sumayah, Sun, Limin, Liu, Ying.  2019.  Resident Evil: Understanding Residential IP Proxy as a Dark Service. 2019 IEEE Symposium on Security and Privacy (SP). :1185—1201.

An emerging Internet business is residential proxy (RESIP) as a service, in which a provider utilizes the hosts within residential networks (in contrast to those running in a datacenter) to relay their customers' traffic, in an attempt to avoid server- side blocking and detection. With the prominent roles the services could play in the underground business world, little has been done to understand whether they are indeed involved in Cybercrimes and how they operate, due to the challenges in identifying their RESIPs, not to mention any in-depth analysis on them. In this paper, we report the first study on RESIPs, which sheds light on the behaviors and the ecosystem of these elusive gray services. Our research employed an infiltration framework, including our clients for RESIP services and the servers they visited, to detect 6 million RESIP IPs across 230+ countries and 52K+ ISPs. The observed addresses were analyzed and the hosts behind them were further fingerprinted using a new profiling system. Our effort led to several surprising findings about the RESIP services unknown before. Surprisingly, despite the providers' claim that the proxy hosts are willingly joined, many proxies run on likely compromised hosts including IoT devices. Through cross-matching the hosts we discovered and labeled PUP (potentially unwanted programs) logs provided by a leading IT company, we uncovered various illicit operations RESIP hosts performed, including illegal promotion, Fast fluxing, phishing, malware hosting, and others. We also reverse engi- neered RESIP services' internal infrastructures, uncovered their potential rebranding and reselling behaviors. Our research takes the first step toward understanding this new Internet service, contributing to the effective control of their security risks.